ADUBAÇÃO ORGÂNICA E MINERAL DAS CULTURAS

Adubação orgânica

Aplicação dum adubo orgânico com o objetivo de fornecer nutrientes à cultura, em particular o azoto.

Adubação mineral

Aplicação dum adubo mineral com o objetivo de fornecer nutrientes à cultura, não só o azoto, mas todos em geral. Pode ser uma adubação mineral de origem natural ou de origem sintética.

Figura 1 – Adubador localizador para aplicação de adubos orgânicos ou minerais, granulados ou peletizados (Peso da Régua)

A adubação orgânica e mineral e os requisitos legais mais exigentes na União Europeia (UE) e em Portugal

Esta prática agrícola é mais condicionada em agricultura biológica (AB), de acordo com o Regulamento (UE) 2018/848 do Parlamento Europeu e do Conselho, em aplicação a partir de 1 de janeiro de 2022. Neste modo de produção agrícola não são permitidos os adubos químicos de síntese como os azotados (com nitratos, sulfato de amónio ou ureia) nem alguns orgânicos quando no seu fabrico são usados estrumes de pecuárias sem terra, resíduos sólidos urbanos não separados na origem e com excesso de metais pesados, ou lamas de ETAR urbana ou industrial. E toda a adubação com produtos comerciais permitida em AB só o é em complemento das práticas de base (adubação verde, rotação e consociação de culturas, estrume de pecuária biológica).

Para a agricultura em geral na UE a Diretiva nº 91/676 (Diretiva "Nitratos") visa proteger as águas da poluição com nitratos de origem agrícola e obriga a medidas em cada Estado-membro.

Em Portugal, para as nove zonas vulneráveis de nitratos (com água subterrânea poluída com nitratos de origem agrícola), existe legislação nacional que condiciona as práticas seguidas pelos agricultores e limita as doses de azoto a aplicar na forma de adubo químico ou orgânico, de acordo com as culturas e as suas produtividades. Por exemplo no milho-grão para uma produção de 10 t/ha não se pode aplicar mais de 200 kg de azoto por hectare, com um máximo de 300 kg/ha para produtividades maiores. E quando o azoto é de um adubo químico há ainda regras quanto à época e modo de aplicação. Consultar a legislação em vigor:

- Portaria nº 259/2012 de 28 de agosto (Programa de Ação para zonas vulneráveis de nitratos);
- Despacho nº 1203/2018 de 5 de fevereiro (Código de Boas Práticas Agrícolas para a proteção da água contra a poluição com nitratos e fosfatos de origem agrícola).

A maior parte dos adubos químicos azotados aplicados em Portugal são de libertação rápida e por isso são facilmente arrastados pela água da chuva ou pelo excesso de rega, com a consequente poluição das águas, principalmente as subterrâneas em que o problema se mantém por muito mais tempo. Em Portugal já temos essa poluição identificada há mais de 20 anos e a situação não melhorou.

Os adubos orgânicos contêm azoto de libertação mais lenta, embora não tão lenta como as dos adubos verdes ou dos corretivos orgânicos.

A adubação orgânica ao substituir, ainda que parcialmente, a adubação química, também permite atingir um dos objetivos da estratégia de Comissão Europeia "Do prado ao prato" (reduzir 50% dos adubos químicos até 2030).

Vantagens

- 1) Possibilidade de fornecer nutrientes (em especial o azoto) à medida que a cultura vai precisando e nas doses certas;
- 2) Possibilidade de substituição do adubo químico azotado, em geral mais poluente, caso se opte pelo orgânico;
- 3) Facilidade de aplicação em comparação com um corretivo, pela menor dose necessária e adequada formulação;
- 4) Nalguns casos possibilidade de aplicar em fertirrega.

Condições de sucesso

- 1) Aplicar de acordo com as necessidades da cultura em nutrientes, quer quanto à dose quer quanto à época de aplicação;
- 2) Nas culturas de regadio optar sempre que possível pela fertirrega, quer para fornecer nutrientes ao longo do ciclo da cultura quer para evitar o uso do trator e o consumo de gasóleo.

A adubação azotada

Os adubos químicos azotados têm (em comparação com os orgânicos), não só um maior risco de poluição das águas pelos nitratos, mas também do ar já que o óxido nitroso (N₂O) libertado é também classificado como gás com efeito de estufa (GEE) e tem um efeito de estufa superior ao CO₂. Há também um consumo energético muito alto no seu fabrico, equivalente a 2,4 litros de petróleo por cada kg de azoto fabricado. É também por isso, que o seu preço aumentou muitíssimo em 2021 e 2022.

Quando se pretende uma resposta mais rápida da cultura à aplicação de azoto e a estrumação e a adubação verde não são suficientes, deve dar-se preferência à utilização de adubos orgânicos. São produtos com uma relação C/N relativamente baixa e que por isso disponibilizam o azoto de uma forma mais rápida. Embora os adubos orgânicos tenham teores elevados de matéria orgânica (MO), na maior parte das situações, não são aplicados com o fim de melhorar de forma sensível o teor de MO do solo, visto que, por razões de ordem ambiental e económica, têm de ser aplicados em quantidades relativamente pequenas.

Classificação dos fertilizantes orgânicos

A legislação portuguesa classifica os adubos orgânicos através do Decreto-Lei nº103/2015, que é baseado na norma NP1048. Esta legislação indica os teores mínimos que um fertilizante orgânico tem de ter para ser considerado um adubo e qual o seu tipo de entre os quatro considerados face aos teores de azoto (N), fósforo (P) e potássio (K) no produto comercial e não na matéria seca do produto como por vezes vem indicado no rótulo (Quadro 1).

Aqueles que não atingem os teores indicados são corretivos e não adubos (ao contrário do que alguns produtos comerciais têm indicado na rotulagem) e, em princípio, deverão ter um preço mais baixo.

Quadro 1 – Classificação dos fertilizantes orgânicos (Decreto-Lei nº103/2015). São indicados os teores mínimos em percentagem em peso do produto comercial (e não da matéria seca!) para a classificação do produto comercial enquanto adubo

Fertilizante orgânico	Azoto (N) orgânico	Fósforo (P₂O₅)	Potássio (K₂O)	N + P ₂ O ₅ + K ₂ O	Matéria orgânica	
Adubo orgânico azotado N	3%	-	-	-	50%	
Adubo orgânico NPK	2%	2%	2%	10% (NPK)	50%	
Adubo orgânico NP	2%	3%	-	6% (NP)	50%	
Adubo orgânico NK	3%	-	6%	10% (NK)	50%	

Adubos orgânicos - exemplos por classes

Adubo orgânico azotado N:

- Dix (N=9%; MO=70%);
- Labinor N10 (N=10%; MO=80%).

Adubo orgânico NPK:

- Biofertil N6 (N=6%; P=2,5%; K=2,4%; MO=52%);
- Ecofem Super ATB (N=3%; P=6%; K=5%; MO=52%);
- Siro Adubo orgânico Bio1 (N=9%; P=3%; K=3%; MO=72%).

Adubo orgânico NP:

- Guanito (N=6%; P=15%; K=2%; MO=60%)

Adubo orgânico NK:

- Boskbio K (N=8%; P=0%; K=17%; MO=58%)

Figura 2 – Aplicação de fertilizantes orgânicos peletizados e minerais granulados em adubação a lanço com distribuidor de adubo antes da sementeira (Palmela, 2021)

Adubação mineral sem azoto Adubos fosfatados (P) e cálcicos (Ca)

Temos os fosfatos naturais de cálcio e os superfosfatos que são fabricados a partir dos naturais por tratamento com ácido sulfúrico. Os superfosfatos são mais poluentes no fabrico (caso das fábricas na Tunísia de onde vêm para Portugal) e no solo, sendo mais solúveis podem perder-se mais facilmente e poluir as águas. Também inibem as micorrizas.

Os fosfatos naturais são uma boa forma de aplicar fósforo e também cálcio, pois são ainda mais ricos neste nutriente, tão importante para as culturas em solos ácidos e pobres em cálcio.

São aplicados sempre à sementeira ou plantação (adubação de fundo e não de cobertura).

Desta forma serão menos necessários os adubos cálcicos solúveis (sólidos ou líquidos) em aplicação durante o crescimento da cultura.

Os fosfatos naturais têm a limitação de não libertarem o seu fósforo em solos alcalinos, pelo que devem ser aplicados apenas em solos ácidos ou neutros. Em solos de pH (em água) acima de 7,0, ou se aplica superfosfato ou adubo orgânico NP.

Em agricultura biológica os superfosfatos são proibidos, pelo que fica a opção dos orgânicos.

Um solo rico em fungos micorrízicos estabelece ligações destes fungos às raízes de quase todas as espécies de plantas, as micorrizas, que ajudam a extrair o fósforo do solo e a fornecê-lo à cultura.

Adubos potássicos (K) e magnesianos (Mg)

Temos principalmente duas formas, os sulfatos e os cloretos de potássio. Os primeiros são os melhores por terem baixo nível de salinidade e, nalguns casos, têm também magnésio.

Adubos com micronutrientes (B, Cu, Fe, Mn, Mo, Zn)

Dadas as pequenas doses necessárias às culturas são em geral aplicados por fertirrega ou pulverização foliar. Devem aplicar-se só depois de analisar o solo e/ou as folhas.

Quadro 2 – Azoto mineralizado (% do N total aplicado) no solo para a cultura, a partir da aplicação de diferentes fertilizantes orgânicos no período de Outono, no sul de França (os mesmos da Figura 4)

ancientes refunzantes organicos no periodo de outono, no sar de França (os mesmos da Figura 4)									
	Semanas após a aplicação								
Fertilizante	2	4	6	8	10	12	14		
	Azo	Azoto mineralizado e libertado (% do N total aplicado)							
Adubo orgânico (N>3%):									
Guano de aves marinhas	7	29	41	57	60	63	64		
Farinha de peixe	5	21	44	61	70	73	75		
Farinha de osso	5	13	23	30	35	36	38		
Corretivo orgânico (N<3%):									
Estrume de vaca fresco	10	13	16	19	20	21	22		
Estrume de vaca com 3 meses de	10	12	13	14	15	16	17		
compostagem	10								
Estrume de vaca com 6 meses de	19	25	28	30	31	32	33		
compostagem	19								

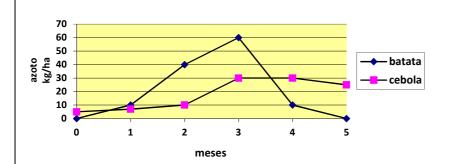


Figura 3 – Necessidades em azoto (kg/ha) da batata e da cebola ao longo do seu ciclo cultural, com a batata mais exigente mais cedo e por isso requerendo mais adubo azotado (orgânico de preferência) à plantação e na primeira amontoa

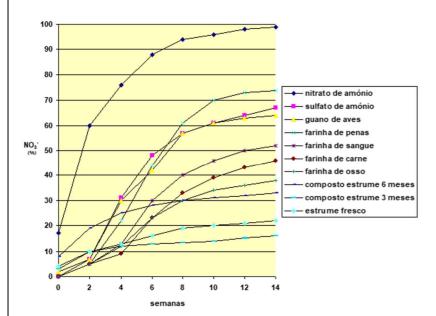


Figura 4 — Quantidades libertadas de azoto nítrico (nitratos) para a cultura a partir de diferentes adubos minerais (nitrato e sulfato de amónio), de adubos orgânicos simples (guano de aves marinhas, farinha de penas, farinha de carne e farinha de osso) e de corretivos orgânicos (estrume de vaca fresco e composto com 3 e 6 meses de compostagem feito com o mesmo estrume de vaca). Aplicação em solo arenoso, em condições mediterrânicas do sul de França, em 20 de setembro, com medições até 27 de dezembro

Da observação da Figura 4 pode concluir-se o seguinte:

- Os fertilizantes que mais rapidamente libertam o azoto são os químicos de síntese, primeiro o nitrato de amónio, em que parte do azoto já vem na forma nítrica e por isso fica logo disponível no momento da aplicação e em que ao fim das 14 semanas 100% azoto tinha sido libertado (N de libertação rápida);
- Os adubos orgânicos libertam também com bastante rapidez o azoto, mas não nas primeiras duas a quatro semanas; isto porque o azoto que contêm está praticamente todo na forma orgânica e precisa ser mineralizado pelos organismos do solo antes de passar às formas minerais, que são absorvidas pela raiz; no final das 14 semanas o azoto transformado em nitrato e disponibilizado à cultura variou com o tipo de adubo, desde a farinha de osso com 38% até à farinha de penas granulada, com 74%;

Os estrumes e os compostos feitos à base de estrume libertam o azoto mais lentamente, exceto nas primeiras duas a quatro semanas, em que é libertada a parte do azoto que contêm na forma mineral (amónio); no final das 14 semanas o azoto libertado variou entre o composto com 3 meses (16%) e o composto com 6 meses (33%), passando por 22% no caso do estrume fresco.

Ficha Técnica

Título: Adubação orgânica e mineral das culturas

Autores:

Jorge Ferreira (Agro-Sanus – Assistência Técnica em Agricultura Biológica, Lda.) e Cristina Cunha-Queda (Instituto Superior de Agronomia, Universidade de Lisboa, Centro de Investigação LEAF – Linking Landscape, Environment, Agriculture and Food) 2022

Distribuição Gratuita

Esta edição é parte integrante do **PROJECTO SISTEMA DE CERTIFICAÇÃO PARTICIPATIVA DOS CIRCUITOS CURTOS AGROALIMENTARES (CCA) ACÇÃO 20.2 – REDE RURAL NACIONAL – ÁREA DE INTERVENÇÃO 3, DA MEDIDA 20 – ASSISTÊNCIA TÉCNICA DO PROGRAMA DE DESENVOLVIMENTO RURAL 2014-2020**

